Using an optimality model to understand medium and long-term responses of vegetation water use to elevated atmospheric CO2 concentrations
نویسندگان
چکیده
Vegetation has different adjustable properties for adaptation to its environment. Examples include stomatal conductance at short time scale (minutes), leaf area index and fine root distributions at longer time scales (days-months) and species composition and dominant growth forms at very long time scales (years-decades-centuries). As a result, the overall response of evapotranspiration to changes in environmental forcing may also change at different time scales. The vegetation optimality model simulates optimal adaptation to environmental conditions, based on the assumption that different vegetation properties are optimized to maximize the long-term net carbon profit, allowing for separation of different scales of adaptation, without the need for parametrization with observed responses. This paper discusses model simulations of vegetation responses to today's elevated atmospheric CO2 concentrations (eCO2) at different temporal scales and puts them in context with experimental evidence from free-air CO2 enrichment (FACE) experiments. Without any model tuning or calibration, the model reproduced general trends deduced from FACE experiments, but, contrary to the widespread expectation that eCO2 would generally decrease water use due to its leaf-scale effect on stomatal conductance, our results suggest that eCO2 may lead to unchanged or even increased vegetation water use in water-limited climates, accompanied by an increase in perennial vegetation cover.
منابع مشابه
Elevated [CO2] and forest vegetation: more a water issue than a carbon issue?
Studies of responses of forest vegetation to steadily increasing atmospheric concentrations of CO2 have focussed strongly on the potential of trees to absorb extra carbon; the effects of elevated [CO2] on plant–soil water relations via decreased stomatal conductance and increased ambient temperature have received less attention, but may be significant in the long term at the ecosystem level. CO...
متن کاملEffects of climate change on water use efficiency in rain-fed plants
Water use efficiency (WUE) reflects the coupling of the carbon and water cycles and is an effective integral trait for assessing the responses of vegetated ecosystems to climate change. In this study, field experiments were performed to examine leaf WUE (WUEleaf) in response to changes in CO2 concentration and other environmental variables, including soil moisture and air temperature. We al...
متن کاملReduced streamflow in water-stressed climates consistent with CO2 effects on vegetation
Global environmental change has implications for the spatial and temporal distribution of water resources, but quantifying its e ects remains a challenge. The impact of vegetation responses to increasing atmospheric CO2 concentrations on the hydrologic cycle is particularly poorly constrained1–3. Here we combine remotely sensed normalized di erence vegetation index (NDVI) data and long-term wat...
متن کاملElevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE.
Plant responses to the projected future levels of CO(2) were first characterized in short-term experiments lasting days to weeks. However, longer term acclimation responses to elevated CO(2) were subsequently discovered to be very important in determining plant and ecosystem function. Free-Air CO(2) Enrichment (FACE) experiments are the culmination of efforts to assess the impact of elevated CO...
متن کاملSap flux in pure aspen and mixed aspen-birch forests exposed to elevated concentrations of carbon dioxide and ozone.
Elevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]) have the potential to affect tree physiology and structure and hence forest water use, which has implications for climate feedbacks. We investigated how a 40% increase above ambient values in [CO2] and [O3], alone and in combination, affect tree water use of pure aspen and mixed aspen-birch forests in th...
متن کامل